If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54^2+72^2=c^2
We move all terms to the left:
54^2+72^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+8100=0
a = -1; b = 0; c = +8100;
Δ = b2-4ac
Δ = 02-4·(-1)·8100
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-180}{2*-1}=\frac{-180}{-2} =+90 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+180}{2*-1}=\frac{180}{-2} =-90 $
| 2x+5)=2(3x-5 | | 2=m6+6 | | -12r=36 | | 2(d+5)=2(3d-5 | | 90+(90-z)+X=180 | | -12=(2/13)(x) | | a^2+16^2=34^2 | | 2+x+2=3+7 | | 6x−1−5x+5=x+4 | | -12=2/13(x) | | x-45=-27 | | x+10+2x=10+2x–5 | | b+(-11)=9 | | 20p+648=838 | | 18m+25=15m−5 | | 20+14.50w=2812.50w | | 33=−16+7x | | -7=(3/2)(r)+5 | | 20+14.5w=28+12.50w | | 2+7z^2=4z | | 1/6d=2/6 | | –8q=3−9q | | 5(4x-3)^3/2=625 | | -7=(3/2r)+5 | | 29-6x=5(-5x+2) | | 10-x=2x+16 | | 6=i=23 | | 8(x)=5x–12 | | 8=u−5 | | -35=10x-3x | | -3+k5=3 | | 16x+10=4x+34 |